Prenatal exposure to cocaine produces unique developmental and long-term adaptive changes in dopamine D1 receptor activity and subcellular distribution.
نویسندگان
چکیده
Low-dose intravenous cocaine administration to pregnant rabbits causes permanent structural alterations in dopamine-rich cerebral cortical areas, substantially reduced dopamine D1 receptor coupling to G(s)-protein, and deficits in cognitive function. The developmental influences of reduced D1-G(s) coupling and the underlying cellular basis are unknown. Using primary neuronal cultures derived from the medial frontal cortex and striatum of in utero saline- and cocaine-exposed embryos, spontaneous neurite outgrowth of in utero-exposed cortical neurons was greater than in control neurons. In contrast, striatal neurons exposed to cocaine in utero exhibited an entirely opposite adaptive response, with diminished spontaneous neurite outgrowth compared with saline-exposed controls. Control neurons isolated from the two structures also exhibited opposite regulatory responses to the D1 receptor agonist SKF38393 (1-phenyl-2,3,4-5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride), inhibiting outgrowth in cortical cultures and stimulating outgrowth in striatal cultures. The agonist was ineffective in modulating neurite outgrowth of neurons from either structure isolated from cocaine-exposed fetuses, reflecting the reduced D1-Gs coupling. Total D1 receptor number was indistinguishable in neurons from the cocaine- and saline-exposed animals, but cell imaging and receptor binding of differentially isolated membranes showed that the lack of responsiveness was because of greatly reduced cell-surface localization of D1 receptors. These data suggest that prenatal exposure to cocaine causes a novel, long-lasting adaptive response in the subcellular distribution of D1 receptors, resulting in alterations in signaling capacity that have developmental and behavioral consequences.
منابع مشابه
In utero cocaine-induced dysfunction of dopamine D1 receptor signaling and abnormal differentiation of cerebral cortical neurons.
Monoamines modulate neuronal differentiation, and alteration of monoamine neurotransmission during development produces specific changes in neuronal structure, function, and pattern formation. We have previously observed that prenatal exposure to cocaine in a clinically relevant animal model produces increased length of pyramidal neuron dendrites in the anterior cingulate cortex (ACC) postnatal...
متن کاملConcurrent activation of dopamine D1 and D2 receptors is required to evoke neural and behavioral phenotypes of cocaine sensitization.
Repeated exposure to psychomotor stimulants produces a striking behavioral syndrome involving repetitive, stereotypic behaviors that occur if an additional exposure to the stimulant is experienced. The same stimulant exposure produces specific alterations in gene expression patterns in the striatum. To identify the dopamine receptor subtypes required for the parallel expression of these acquire...
متن کاملExpression of mutant NMDA receptors in dopamine D1 receptor-containing cells prevents cocaine sensitization and decreases cocaine preference.
The interaction of dopamine and glutamate in limbic brain regions mediates behaviors associated with psychostimulants, which act in part to increase dopamine signaling at both D1 receptors (D1Rs) and D2 receptors. Many addictive behaviors are a result of learned associations, and NMDA receptor activation has been shown to be important for these behaviors. We hypothesized that if NMDA receptor a...
متن کاملCorticostriatal up-regulation of activity-regulated cytoskeletal-associated protein expression after repeated exposure to cocaine.
We provide evidence that cocaine evokes short- and long-lasting increases in activity-regulated cytoskeletal-associated protein (Arc) expression after a finely tuned, time-dependent and regional-selective expression profile. Acute experiments revealed that cocaine up-regulates Arc expression primarily in striatum and prefrontal cortex through a dopamine D1-dependent mechanism and a combination ...
متن کاملNeurobehavioral and Developmental Traiectories Associated with Level of Prenatal Cocaine Exposure.
INTRODUCTION In experimental models, prenatal cocaine exposure has been found to perturb GABA and dopamine development. Clinically, abnormalities in tone, posture and state regulation are noted in early infancy but the evolution of these findings over time is not well described. The current study assesses the longitudinal effects of prenatal cocaine exposure in dose-dependent fashion on develop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2007